Syllabus

·           Lower Darboux sum and upper Darboux sum and related results

·           Darboux theorem

·           Conditions of Riemann integrability

·           Integrability criterion in terms of Riemann sums

·           Properties of Riemann integral

·           Properties of integrals

·           Bonnet's mean value theorem

·           Indefinite integral theorem

·           Second fundamental theorem of integral calculus

·           Integration by parts

·           Change of variable

Partition 

 By a partition P of a closed interval [a, b], we mean a finite ordered set 

            P = {a = x0, x1, …, xn = b}, where a = x0 < x < x2 < … < xn = b.

The partition P consist (n + 1) points which divide the closed interval [a, b] into n sub-intervals [x0, x1], [x1, x2], …., [xr–1, xr], …, [xn –1, xn]. We shall use the symbol dr to denote the rth sub-interval [xr–1, xr] and its length (xr – xr –1). When function f is bounded on [a, b], then the symbols Mr and m­r are used to denote the supremum and infimum of f on rth subinterval dr.

 Family of Partition

The collection of all partitions of closed interval [a, b] is denoted by P [a, b] is known as the family of partitions of [a, b].

Norm

 The norm of a partition P is denoted by ||P|| or m(P), will mean the length of the largest subinterval             dr. Thus, m(P) = max {xr – xr–1: 1 £  r £ n}.

Finer

 If P1 and P2 are the partitions of [a, b], i.e. P1, P2 ÃŽ P [a, b], then the partition P2 is said to be                 finer than P1 if P1 ÃŒ P2, i.e. every points of partition P1 is the point of P2.

Upper and lower Darboux sums

 Let f be a bounded function on [a, b] and Mr and mr respectively denote its upper and lower bounds on dr. Then the sums U(P) and L(P) defined by


Note:   The upper and lower Darboux sums of a function f may also be denoted by U(P, f ) and L(P, f ) respectively. It should be note that

U(P, –f) = – L(P, f ) and L(P,–f ) = – U(P, f ).


























Solved Problems 

Q.1.        State and prove the four important properties regarding the upper and lower Darboux sums for any function f bounded on [a, b].

Soln: The following are the four important properties regarding the upper and lower Darboux sums for any function f bounded on [a, b]:

i.           If PÃŽP [a, b], then U(P) and L(P) are bounded and U(P) ³ L(P) "PÃŽP [a, b]

ii.          If P1, P2 ÃŽ P[a, b] and P1 ÃŒ P2, then U(P2) £ U(P1) and L(P2) ³ L(P1), i.e. the upper and

            lower  Darboux sums can not increase and decrease respectively with the fineness of the                      partition.

iii.         L(P1) £ U(P2) " P1, P2 ÃŽ P[a, b], i.e. no lower Darboux sum can exceed any upper Darboux                sum.

iv.        If P1, P2 ÃŽ P[a, b], || P1||£d and |f(x)| < k " x ÃŽ [a, b] then for P1 ÃŒ P2 with p additional points             U(P1) £ U(P2) + 2pkd, and L(P2) £ L(P1) + 2pkd





































iii.         Let PÃŽP [a, b] be finer than P1 and P2, then for P1 ÃŒ P and P2 ÃŒ P, L(P1) £ L(P) £ U(P) £                     U(P2) i.e. L (P1) £ U(P2 ), " P1, P2ÃŽP [a, b].
iv.        Let P2 be the partition with additional points x1, x2, …,xp, than of P1. Let P¢2 = {x1} È P1 with             xr –1 < x1 < xr and Mr, Mr as the upper bounds of f on [xr – 1, x1] and [x1, xr] respectively.                     Then, max {Mr, Mr} £ Mr, where Mr is the upper bounds of f on [xr –1, xr].     
                U(P1) – U(P¢2) = Mr(xr – xr –1) – [Mr(x1 – xr –1) + Mr(x ­x1)]

                      = Mr(xx1 +­ x1 – xr –1) – Mr(x1– xr –1) – Mr(xrx1)  

                     = Mr (xr ­x1) + Mr (x1 – xr –1) – Mr(x1 –xr –1) – Mr(xr x1)

                      = Mr(xx1) + Mr (x1 – xr –1)– Mr(x1– xr –1) – Mr(xr x1)

                      = (Mr – Mr) (x1 – xr –1) + (Mr – Mr) (xr x1)

Since, |f(x)| < k " x ÃŽ [a, b]

             – k £ Mr£ Mr £ k and – k £ Mr £ Mr £ k

             Þ 0 £ Mr – Mr£ 2k and 0 £ Mr – Mr£ 2k

Therefore, U (P1) – U (P2¢) £ 2k (xr – xr – 1) £ 2kd, || P1|| £ d.

             Thus U(P1) £ U(P¢2) + 2kd